Aversive learning enhances perceptual and cortical discrimination of indiscriminable odor cues.

نویسندگان

  • Wen Li
  • James D Howard
  • Todd B Parrish
  • Jay A Gottfried
چکیده

Learning to associate sensory cues with threats is critical for minimizing aversive experience. The ecological benefit of associative learning relies on accurate perception of predictive cues, but how aversive learning enhances perceptual acuity of sensory signals, particularly in humans, is unclear. We combined multivariate functional magnetic resonance imaging with olfactory psychophysics to show that initially indistinguishable odor enantiomers (mirror-image molecules) become discriminable after aversive conditioning, paralleling the spatial divergence of ensemble activity patterns in primary olfactory (piriform) cortex. Our findings indicate that aversive learning induces piriform plasticity with corresponding gains in odor enantiomer discrimination, underscoring the capacity of fear conditioning to update perceptual representation of predictive cues, over and above its well-recognized role in the acquisition of conditioned responses. That completely indiscriminable sensations can be transformed into discriminable percepts further accentuates the potency of associative learning to enhance sensory cue perception and support adaptive behavior.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lesions of nucleus accumbens disrupt learning about aversive outcomes.

Nucleus accumbens (NAcc) is critical for encoding and using information regarding the learned significance of cues predictive of reward. However, its role in processing information about cues predictive of aversive outcomes is less well studied. Here, we examined the effects of NAcc lesions in an odor-guided discrimination task in which rats use odor cues predictive of either appetitive or aver...

متن کامل

Neural Encoding in Ventral Striatum during Olfactory Discrimination Learning

A growing body of evidence implicates the ventral striatum in using information acquired through associative learning. The present study examined the activity of ventral striatal neurons in awake, behaving rats during go/no-go odor discrimination learning and reversal. Many neurons fired selectively to odor cues predictive of either appetitive (sucrose) or aversive (quinine) outcomes. Few neuro...

متن کامل

Learning-dependent structural plasticity in the adult olfactory pathway.

Olfactory learning in humans leads to enhanced perceptual discrimination of odor cues. Examining mouse models of both aversive and appetitive conditioning, we demonstrate a mechanism which may underlie this adult learning phenomenon. Topographically unique spatial wiring of the olfactory system allowed us to demonstrate that emotional learning of odor cues alters the primary sensory representat...

متن کامل

INTERNATIONAL SYMPOSIUM ON OLFACTION AND TASTE Perceptual and Neural Pliability of Odor Objects

A key function of the sense of smell is to guide organisms towards rewards and away from dangers. However, because relatively few volatile chemicals in the environment carry intrinsic biological value, the meaning of an odor often needs to be acquired through learning and experience. The tremendous perceptual and neural plasticity of the olfactory system provides a design that is ideal for the ...

متن کامل

Generalized vs. stimulus-specific learned fear differentially modifies stimulus encoding in primary sensory cortex of awake rats.

Experience shapes both central olfactory system function and odor perception. In piriform cortex, odor experience appears critical for synthetic processing of odor mixtures, which contributes to perceptual learning and perceptual acuity, as well as contributing to memory for events and/or rewards associated with odors. Here, we examined the effect of odor fear conditioning on piriform cortical ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Science

دوره 319 5871  شماره 

صفحات  -

تاریخ انتشار 2008